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Abstract11

Rapid aroma profiling of food products is a first step towards at-line flavor quality control and off-flavor assessment. In this paper, the
potential of the zNoseTM was tested for the first time to address this application. Honey was chosen as the food product because of its
characteristic aroma. Both a chromatogram and a spectral approach to the interpretation of the zNoseTM signal were established. In the
chromatogram approach, the signal was treated as a traditional chromatogram and relative peak areas were calculated and compared, while
the whole aroma spectrum was considered in the spectral approach. Shifts in GC-column retention times initially led to misinterpretation
of the results in the spectral approach. A data processing algorithm was, hence, developed to correct for these shifts. Data were analyzed
with principal component analysis (PCA), and canonical discriminant analysis (CDA). With both relative peak areas and corrected spectra,
the aroma of six different honey varieties and two types of sugar solutions were successfully discriminated. A classification model was
built and validated externally, which resulted in a correct classification of 15 out of 16 honey aroma profiles (94%).
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1. Introduction23

Food quality is a complex concept referring to multi-24

ple characteristics that make a food product acceptable or25

more desirable to eat. Important food quality aspects are26

safety, nutritional value, functionality, and aesthetics (color,27

texture, flavor, appearance). While the first three are sub-28

jectively quantifiable, the last has an even more important29

subjective component, which makes it more difficult to de-30

scribe and/or quantify. Flavor, as the combination of aroma31

and taste, is a very important component of this subjective32

quality [1].33

Traditional analytical and quantitative techniques for fla-34

vor analysis include HPLC, GC with headspace sampling35

and GC-MS analysis with solid phase microextraction[2–5].36

Numerous reports exist on the flavor analysis of a wide range37

of food products with these techniques and they have proven38

to give very precise and reliable results. These techniques,39

however, involve a lot of sample preparation, are time con-40
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suming and can only be carried out in a specially equipped41

laboratory environment by well trained operators. Next to42

a chemical characterization, flavor analysis often also in-43

cludes a sensory evaluation by both trained taste panels and44

consumer panels[4,6]. This type of evaluation is important 45

in classifying flavor characteristics according to human per-46

ception and consumer behavior. Evidently, this is a very sub-47

jective and variable evaluation, which involves a very costly48

and time consuming procedure. 49

New techniques that allow a faster, objective flavor char-50

acterization without the need for special equipment or skills51

offer value to industries attempting an on-line or at-line52

flavor evaluation. The best known of these new techniques53

is probably the electronic nose (E-nose)[7–10]. The E-nose 54

has been introduced as a fast, non-destructive and at-line55

alternative for aroma analysis measuring the change in56

piezo-electric properties of a sensor array in the presence57

of aroma components in the sample headspace. Aroma58

analysis with the E-nose has not always been very success-59

ful. It is very sensitive to drift and lacks the possibility for60

identification of the different aroma compounds causing61

the signal change. Recently, the mass spectrometry based62

E-nose (MSE-nose) has been introduced as a fast and sen-63
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sitive, but also an expensive, alternative to fast aroma finger64

printing [11].65

Since a few years, another fast, non-destructive, low-cost,66

and sensitive alternative sensor for food aroma analysis is67

commercially available: the zNoseTM. The zNoseTM is a68

fast GC technique, which allows identification and finger69

printing of aroma as with regular GC but at the same time70

operates at the speed of the E-nose[12]. The zNoseTM has71

not yet been as widely used as the E-nose. Reports exist on72

the use of zNoseTM for the evaluation of the aroma of black73

tea [13], the detection of off-flavors in wine[14] and the74

analysis of plant volatiles[15].75

The objective of this paper is to evaluate the potential of76

the zNoseTM as an aroma finger printing tool. Honey was77

chosen as the product under study because of its specific78

aroma, which depends on factors such as the botanical and79

geographical origin of honey. Also sugar solutions were in-80

cluded in the analysis because of their resemblance to honey.81

The zNoseTM was used to discriminate between honey vari-82

eties of different botanical origins, between pure honey va-83

rieties and sugar solutions and in between different sugar84

solutions.85

2. Experimental86

2.1. Honey and adulterant samples87

All honeys were provided directly by US honey produc-88

ers. In experiment 1, samples of three different honey va-89

rieties (buckwheat, clover, orange blossom) were used. For90

experiment 2, samples of six different honey varieties (buck-91

wheat, clover, orange blossom, black locust, mint, carrot)92

from different geographical origin compared to the honeys93

considered in the first experiment were used. Liquid medium94

invert cane and beet sugars were purchased from the Impe-95

rial Sugar Company (Sugarland, TX, USA).96

In experiment 1, 10 independent samples were analyzed97

for each honey variety and sugar solution. In experiment 2,98

10 independent samples per honey variety and sugar solution99

were measured, of which eight were used for calibration100

purposes and two for external validation. The measurement101

protocol is described in the next paragraph.102

2.2. zNoseTM measurements103

The zNoseTM (7100/4100 vapor analysis system, Elec-104

tronic Sensor Technology, USA) used for this work has a105

surface acoustic wave sensor (SAW) with a parts per billion106

sensitivity. The SAW detector is a small miniature vapor107

chemical sensor used to detect volatile organic compounds108

(VOCs). The base material of a SAW device is an uncoated109

piezo-electric quartz crystal. This crystal is in contact with110

a thermoelectric element, which controls the temperature111

for cooling during vapor adsorption and for heating during112

cleaning of the crystal. The crystal operates by maintain-113

ing highly focused and resonant surface acoustic waves of114

500 MHz on its surface. When volatiles adsorb on the sur-115

face of the sensor the frequency of the surface acoustic wave116

will be altered, which will in turn affect the detection signal117

and allow identification of the contaminants[12]. 118

For the zNoseTM measurements, 8 g of pure honey or pure119

sugar solution was transferred into a vial of 40 ml (98 mm120

length and 28 mm outer diameter) sealed with a screw cap121

containing a septum. The vials were then transferred into122

a waterbath at 50◦C where the samples were allowed to123

equilibrate with the headspace in the vial for a minimum124

of 120 min. To prevent any leakage during this equilibration125

period the screw cap with septum was covered with an extra126

plastic cap. The analysis temperature of 50◦C was chosen 127

after an initial set of experiments whereby the profiles of128

all pure honeys were compared over five repetitions at room129

temperature, 50 and 70◦C (results not shown). At room tem-130

perature the profiles were less concentrated and more sensi-131

tive to changes in ambient temperature. At 70◦C the profiles 132

were very intense but more noise susceptible, possibly due133

to reactions occurring in the honey at high temperature. At134

50◦C the profiles were eventually both intense and stable135

and equilibration of the headspace was relatively fast. After136

equilibration the samples were measured one by one with137

the zNoseTM. 138

The zNoseTM was provided with a 5 cm needle at the in-139

let, which was used for sampling through the septa of the140

vials. The sampling mode was set to 5 s after which the sys-141

tem switched to a 10 s data acquisition mode. During this142

time period the gas sample was released from the trap inside143

the system and carried over the column (DB-5) in a helium144

flow of 3.00 cm3. On the column the different chemical com-145

ponents in the gas sample were separated and sequentially146

detected by the SAW detector through a deviation from its147

set frequency change. Data were collected every 0.02 s. The148

inlet temperature was 150◦C, the valve temperature was149

120◦C, and the initial column temperature was 70◦C. Dur- 150

ing analysis the column temperature was ramped at the rate151

of 10◦C per second to a final column temperature of 100◦C. 152

The SAW sensor was operated at a temperature of 40◦C. 153

After each data sampling period the system needed a 15 s154

baking period, in which the sensor was shortly heated to155

125◦C and after which the temperature conditions of the156

inlet, column, and sensor were reset to the initial conditions.157

In between each sample measurement at least one blank was158

run to ensure cleaning of the system and a stable baseline.159

2.3. Data analysis approach 160

As the zNoseTM is a combination of a sensor based de-161

tection and a regular GC analysis, the data resulting from162

the zNoseTM measurements were thus approached in two163

different ways. 164

First, a regular GC data analysis approach with the com-165

parison of different peaks and peak areas was attempted.166

This was possible through the software of the instrument,167
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Fig. 1. Chromatograms of (A): buckwheat, clover, and orange blossom honey and (B): buckwheat honey, beet, and cane invert sugar. Letters indicate
peaks considered for the PCA analysis.

which automatically transforms the frequency profile that is168

read from the SAW sensor to its first derivative. When only169

the positive values of this first derivative plot were consid-170

ered, a chromatogram, which is similar to a regular GC chro-171

matogram resulted (Fig. 1). Each peak found in this deriva-172

tive plot corresponded to a specific volatile compound and173

had a retention time specific for the column and analysis174

temperature. The area under the peak was correlated to the175

compound concentration and was expressed in counts (cts).176

For the chromatogram approach, 14 corresponding peaks177

in all chromatograms of all different products were selected178

and their relative areas compared. Relative peak areas were179

calculated as the absolute peak area (in counts) of each peak180

divided by the sum of all peak areas. When a peak was not181

present in a certain chromatogram its relative area was set182

to zero.183

In a second approach, the full first derivative profile (posi-184

tive and negative values) was considered and treated as spec-185

tral data (Fig. 2). In this case the full frequency spectrum186

of every sample was analyzed. Vertical baseline shifts in the187

frequency profiles were automatically filtered out by taking188

the first derivative. Next to the vertical shifts also horizon-189

tal shifts are a very common phenomenon in all types of190

chromatography. Small fluctuations in injection time, tem-191

perature profile, and data processing of the system cause the192

different components to be released and detected at slightly193

different retention times or within a ‘time window’. In nor-194

mal chromatographic analysis this does not generally result195

in problems since only a limited number of selected peaks196

are compared, each within its own window. In the case when197

full spectra are compared this shift leads to misinterpreta-198

tion, however, as important peak information is compared199

with noise when two spectra are not perfectly aligned. To200

correct for horizontal shifts, an algorithm was developed in201

MATLAB version 6.1 (The Mathworks, Inc.). 202

Assume the recorded zNoseTM aroma spectrum consists203

of n datapoints. Every datapointi, where 1= i = n, con- 204

sists of one frequency value and one time point at which205
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Fig. 2. Spectra of (A): buckwheat, clover, and orange blossom honey and (B): buckwheat honey, beet, and cane invert sugar.

this frequency reading was made. For a baseline correction,206

a constant value is subtracted or added to all the frequency207

readings of the spectrum. The whole spectrum shifts parallel208

in the vertical direction. In case of a horizontal shift correc-209

tion of the spectrum, the values of the frequency readings210

stay constant, but the time at which they occur is adjusted211

according to the following formula:212

tnew,i = a + btold,i + ct2old,i213

wheretnew,i is the corrected time which is assigned to the214

ith frequency reading,told,i is the original time for theith215

frequency reading,a, b, andc are the regression coefficients216

applied to transform the old time value into a new one. For217

a = 0, b = 1 andc = 0, no horizontal shift correction is218

carried out. Fora �= 0, b �= 1 andc �= 0, the spectrum shifts219

over a constant valuea. For a positive and negative value220

of a, the shift will be to the right and left, respectively. For221

a �= 0, b �= 1 andc �= 0, the new time value is a linear222

function of the old time value. The spectrum is stretched223

linearly over time. Frequency readings with a large original224

time value will be shifted over a larger time interval than225

values with a low original time value. Fora �= 0, b �= 1 and 226

c �= 0 the original spectrum is stretched non-linearly over227

time, with the largest shifts for the frequency points with the228

largest original time values. 229

For the developed algorithm a spectrum of buckwheat230

honey was selected as reference spectrum as buckwheat231

was the product with the most complex aroma profile. All232

other spectra were shifted horizontally to have the best233

overlap with this reference spectrum. In the algorithm the234
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Fig. 3. Illustration of correction algorithm applied to zNoseTM honey aroma spectra. A buckwheat honey spectrum was used as reference spectrum. The
spectra of all other honey samples were corrected with respect to this spectrum. (A): reference spectrum and raw spectra of a buckwheat honey sample
(B): horizontal shift correction algorithm applied to the buckwheat honey sample.

three parameters were adjusted manually in order to shift235

and stretch the spectra linearly or non-linearly, depending236

on the needs. InFig. 3 this corrective algorithm is illus-237

trated for another buckwheat honey sample. The horizontal238

shift in chromatogram or spectrum is clearly illustrated in239

Fig. 3A. For small time values, the peaks of the buckwheat240

sample overlay those of the buckwheat reference, but as241

the time increases, the maxima of corresponding peaks lay242

further apart, suggesting the need for a horizontal shift243

correction. The corrected buckwheat spectrum is shown in244

Fig. 3B. The corresponding peak maxima of the reference245

and measured honey sample now occur at the same time.246

The corrected spectra are now ready for further statistical247

analysis. 248

2.4. Statistical analysis 249

The data were processed with principal component anal-250

ysis (PCA) using “The Unscrambler” software version 6.11251

(CAMO AS, Trondheim, Norway) and with canonical dis-252

criminant analysis (CDA) using SAS/STAT software version253

8.2 (SAS Institute, Cary, NC, USA)[16]. 254
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3. Results and discussion255

3.1. Experiment 1: approach to zNoseTM data analysis256

In a first experiment the zNoseTM was tested for its abil-257

ity to provide individual fingerprints of the aroma of dif-258

ferent pure honeys and sugar solutions. In this experiment,259

the fingerprints obtained were not used for full identifica-260

tion of the different honey aroma compounds nor for classi-261

fication of different honeys. Instead, two different data anal-262

ysis approaches: the chromatogram and spectral approach,263

were developed for optimal extraction of information con-264

tained in the raw data. To not overload the graphs only three265

different honeys and two sugar solutions were included at266

this point. Sugar solutions were included in the test be-267

cause of their resemblance with honey and because they268

are often mentioned as mimics for honey in adulteration269

practices.270

With the chromatogram approach, PCA analysis on the271

total dataset of all relative peak areas of three honey types272

(buckwheat, clover and orange blossom) and two sugar so-273

lutions (beet invert and cane invert) resulted in a separation274

between all products with PC1 and PC2 explaining 90%275

of the total variance (Fig. 4). The clearest separation was276

among pure honeys and pure sugar solutions along the PC1277

axis. The corresponding loading plot revealed this separation278

to be related mainly to components in the first part of the279

chromatogram (Fig. 1A and B), which were more prominent280

for the sugars than for the pure honeys. A further separation281

was found among the individual pure honeys. This separa-282

tion was dominated to a much larger extent by PC2. This283

reflected the very distinct aroma of buckwheat honey com-284

pared to other honeys. Especially in the middle part of the285

chromatogram (2.5–5 s) a few very pronounced peaks were286

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

PC1 (67%)

P
C

2 
(2

3%
)

beet
cane
buckwheat
clover
orangeblossom

buckwheat

clover

orange blossom

beet

cane

Fig. 4. PCA score plot of buckwheat honey, clover honey, orange blossom honey, beet invert sugar, and cane invert sugar, based on zNoseTM chromatograms.

found for buckwheat, which were not present in the other287

honey varieties. This was confirmed in the loading plot of288

PC2 where the highest loadings were also appointed to these289

peaks in the middle (not shown). 290

In the spectral approach, both the negative and positive291

values in first derivative plots of all honeys and sugar solu-292

tions were included in the PCA analysis. This did not at first293

lead to a good separation (Fig. 5A). Only the aroma finger-294

print of buckwheat appeared specific enough to be separated295

from the rest in a PCA plot with PC1 and PC2 explaining296

80% of the total variance. 297

Closer examination of the spectra, however, revealed that298

a horizontal shift between the different spectra was caus-299

ing this poor PCA separation. This horizontal shift was300

attributed to fluctuations in retention time of the chemi-301

cal components on the chromatographic column. An algo-302

rithm was developed to correct the spectra for this horizontal303

shift. This is described inSection 2.4of the materials and304

methods. 305

A PCA analysis on the corrected spectra did result in a306

much better separation with PC1 and PC2 explaining 89%307

of the total variance (Fig. 5B). Buckwheat honey did again308

form an isolated group, this time separated from the rest309

along the PC1 axis. Separation among honey varieties and310

sugars was recorded along the PC2 axis. Evaluation of the311

corresponding loading plots of PC1 and PC2 showed again312

that the separation of buckwheat, which was dominated by313

PC1, was explained mainly by the contribution of the middle314

part of the chromatogram. At this point in the spectrum the315

loadings for PC1 were the highest. The separation among316

honeys and sugars was in turn determined by the beginning317

(0–2.5 s) and end (5–10 s) parts of the spectrum with the318

loading plot of PC2 carrying the highest loadings at these319

positions. 320
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Fig. 5. PCA score plot of buckwheat honey, clover honey, orange blossom honey, beet invert sugar, and cane invert sugar, based on zNoseTM (A):
uncorrected and (B): corrected full spectra.

From this analysis it appeared that both the chromatogram321

and spectral approach hold potential to classify different322

types, which will be illustrated in the experiment described323

in the next paragraph.324

3.2. Experiment 2: classification of different honeys and325

sugar solutions with zNoseTM326

In this experiment six honeys of different botanical327

and/or geographical origins as in the previous experi-328

ment and two sugar solutions were measured. The PCA329

analysis in experiment 1 has indicated that both the chro-330

matograms and the corrected spectral data are poten-331

tially valuable to build classification models for honey.332

In this experiment classification models are built for333

both data types. All models were calibrated on 64 mea-334

surements. Two independent measurements per honey335

and sugar solution were used as an external validation336

set. 337

In the chromatogram approach, the 12 most abundant338

honey volatiles were selected and used directly as explana-339

tory variables in the discriminant analysis. This model340

showed a good classification performance. All but one of341

the 16 external validation samples were classified correctly.342

Only one sample from the carrot honey was classified in343

the group of the clover honey. 344
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Fig. 6. Two dimensional CDA plot of buckwheat, clover, orange blossom, black locust, mint, and carrot honey, and beet and cane invert sugar based on
zNoseTM corrected full spectra. Calibration measurements are depicted by filled symbols. Validation measurements are indicated by lighst colored and
dark bordered corresponding symbols.

In case of the corrected spectral data, it was not possi-345

ble to use the full spectra directly to perform the discrimi-346

nant analysis. The number of variables (480) exceeded the347

number of observations (80) considerably, resulting in an348

overfit. To resolve this problem data reduction techniques349

such as principal components or canonical variable analy-350

sis had to be applied first. A discriminant analysis based351

on eight PC’s resulted in a good classification model, in352

which, again, all but one of the validation samples were cor-353

rectly classified. The PCA data reduction has the disadvan-354

tage that linear combinations of the original variables are355

constructed to describe the total variance in the data struc-356

ture rather than accentuating the sometimes very small dif-357

ferences in spectral information between honeys. Canoni-358

cal discriminant analysis offers a good alternative to over-359

come this. In CDA, canonical variables (cv) are calculated,360

which are also linear combinations of the original vari-361

ables, but which maximize the ratio of between-groups vari-362

ance over within-groups variance. Applying discriminant363

analysis on these canonical variables results in a discrim-364

inant function, which enables classification of any future365

measurement depending on mahalanobis distance to group366

means.367

Twelve time points on the corrected spectra were visually368

selected to calculate five canonical variables on which the369

discriminant analysis was conducted. This resulted again in370

a good classification performance as illustrated inFig. 6. In a371

two dimensional canonical variate plot, all honeys and sugar372

solutions can be visually discriminated. The calibration ob-373

servations are depicted in plain symbols and the external374

validation observations are indicated with a lighter and bor-375

dered symbol similar to the corresponding honey calibration376

observations. Results obtained indicated that the validation377

measurements coincide with the corresponding calibration378

measurements, except for one carrot honey validation ob-379

servation, which is classified among the clover honey ob-380

servations. This corresponds to a 94% correctly classified381

external validation samples. 382

The zNoseTM can, therefore, be considered sufficiently383

sensitive to discriminate among the aroma of the different384

honey varieties examined. In addition, the aroma fingerprints385

of adulterant sugars can also be discriminated from those386

of pure honeys and also among different adulterants the fin-387

gerprints are sufficiently unique to separate them from each388

other. 389

4. Conclusion 390

In this work, the zNoseTM was introduced as a new poten-391

tial at-line technique to analyze the aroma of honey. Aroma392

fingerprints of 6 different honeys were sufficiently specific393

to discriminate these honeys based on their aroma composi-394

tion. With CDA, pure honey, and pure sugar solutions could395

be discriminated from each other, whether the data were ap-396

proached as chromatograms with relative peak areas or as397

full spectra, which were corrected for horizontal shifts. Val-398

idation of the discriminant models was done externally with399

an independent sample set. 400

This work clearly shows the potential of the zNoseTM 401

as a fast aroma finger printing technique. With some future402

work on optimization of the experimental conditions and403

extension to a broader range of honey types and origin the404

zNoseTM has the potential for practical implementation. 405
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